An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling

نویسندگان

  • Hiroaki Ikushima
  • Akiyoshi Komuro
  • Kazunobu Isogaya
  • Masahiko Shinozaki
  • Ulf Hellman
  • Keiji Miyazawa
  • Kohei Miyazono
چکیده

Transforming growth factor (TGF)-beta induces various cellular responses principally through Smad-dependent transcriptional regulation. Activated Smad complexes cooperate with transcription factors in regulating a group of target genes. The target genes controlled by the same Smad-cofactor complexes are denoted a synexpression group. We found that an Id-like helix-loop-helix protein, human homologue of Maid (HHM), is a synexpression group-restricted regulator of TGF-beta signalling. HHM suppressed TGF-beta-induced growth inhibition and cell migration but not epithelial-mesenchymal transition. In addition, HHM inhibited TGF-beta-induced expression of plasminogen activator inhibitor-type 1 (PAI-1), PDGF-B, and p21(WAF), but not Snail. We identified a basic-helix-loop-helix protein, Olig1, as one of the Smad-binding transcription factors affected by HHM. Olig1 interacted with Smad2/3 in response to TGF-beta stimulation, and was involved in transcriptional activation of PAI-1 and PDGF-B. HHM, but not Id proteins, inhibited TGF-beta signalling-dependent association of Olig1 with Smad2/3 through physical interaction with Olig1. HHM thus appears to regulate a subset of TGF-beta target genes including the Olig1-Smad synexpression group. HHM is the first example of a cellular response-selective regulator of TGF-beta signalling with clearly determined mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential roles of TGF-β signalling in joint tissues during osteoarthritis development.

Osteoarthritis (OA) is the most common degenerative joint disease. The aetiology of OA is multifactorial, including joint injury, obesity, ageing and heredity. Inactivation of transforming growth factor beta (TGF-β) or its downstream molecules may be an important signalling event contributing to OA pathogenesis because mutations of Smad3, a central molecule in TGF-β signalling, have been found ...

متن کامل

The Effects of WW2/WW3 Domains of Smurf2 Molecule on CD4+CD25+/CD4+ Proportion in Spleen of 4T1 Tumor Bearing BALB/c Mice

Background: TGF-β has long been considered as the main inducer of Tregs in tumor microenvironment and is the reason for the aberrant number of Tregs in tumor-bearing individuals. Recently, it has been suggested that the enzyme arginase I is able to mediate the induction of Tregs in a TGF-β-independent fashion. The recombinant WW2/WW3 domains from smad ubiquitination regulatory factor 2 molecule...

متن کامل

Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling.

TGF-β (transforming growth factor-β) is a pleiotropic cytokine regulating diverse cellular processes. It signals through membrane-bound receptors, downstream Smad proteins and/or other signalling mediators. Smad7 has been well established to be a key negative regulator of TGF-β signalling. It antagonizes TGF-β signalling through multiple mechanisms in the cytoplasm and in the nucleus. Smad7 can...

متن کامل

MFB-1, an F-box-type ubiquitin ligase, regulates TGF-β signalling

TGF-β signalling regulates cell growth, differentiation, morphogenesis and apoptosis. MAFbx/ Atrogin-1 has been identified as a regulator for skeletal muscle atrophy and encodes an F-box-type E3 ubiquitin ligase. However, little is known about how MAFbx/Atrogin-1 regulates cellular signalling. Here, we identify and genetically characterize MFB-1, a MAFbx/Atrogin-1 homologue from Caenorhabditis ...

متن کامل

Structure of a dominant-negative helix-loop-helix transcriptional regulator suggests mechanisms of autoinhibition.

Helix-loop-helix (HLH) family transcription factors regulate numerous developmental and homeostatic processes. Dominant-negative HLH (dnHLH) proteins lack DNA-binding ability and capture basic HLH (bHLH) transcription factors to inhibit cellular differentiation and enhance cell proliferation and motility, thus participating in patho-physiological processes. We report the first structure of a fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO Journal

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2008